Print Friendly, PDF & Email

Key Factspending-external-review

  • Kombucha is a fermented tea that can be produced commercially or in private homes. Kombucha has become increasingly popular and a number of national and regional supermarkets, including natural foods stores and large grocery store chains, now carry the fizzy, refreshing tea on store shelves.
  • Many people drink kombucha for its professed health benefits; however, these claims still need more research. Some animal studies have shown it has bioactive components that display antioxidant, detoxifying, and antimicrobial properties that may contribute to claims that kombucha plays a role in overall immune health, mental health, and cancer and cardiovascular disease prevention.
  • Kombucha production dates back to as early as 220 B.C. and is now distributed globally. As of 2015, the brand “GT’s Kombucha” is one of the largest commercial distributors of the drink.
  • The FDA states that when properly prepared, kombucha can be safe for human consumption. Reported cases of negative health effects and side effects have been isolated and few. Cases were associated with high acidity and preexisting conditions, overconsumption, poor handling of the fermented product, or the result of not following proper, hygienic home production practices. ,


Ready-to-drink kombucha with ice and lemon. Source: arealfoodlover.wordpress.com
Ready-to-drink kombucha with ice and lemon. Source: arealfoodlover.wordpress.com

Kombucha is a fermented tea product with an acidic taste and a hint of sweetness. It is made from a mixture of brewed tea, sugar, and a culture often referred to as a SCOBY (Symbiotic Culture of Bacteria and Yeast), a mother, or (inaccurately) as a mushroom. The SCOBY is a biofilm-like microbial mat composed of cellulose and a mutually beneficial association of fermentative bacteria and yeasts. The popularity of kombucha can, in large part, be attributed to its perceived health benefits, although the majority of these have not been suitably evaluated. Kombucha, rich in organic acids and biologically active compounds from fermentation activity, has a low pH and strong antimicrobial properties, which may provide therapeutic benefits and make kombucha components good natural food preservatives.,,


Although kombucha has only recently become popular in the United States, there are records of kombucha production from as early as 220 B.C. in northeast China, where it was widely consumed for its presumed detoxifying and energizing abilities. Kombucha then emerged in Japan in 414 A.D. where it was notably used to aid the emperor with his gastrointestinal health concerns. Dutch and Portuguese explorers brought kombucha to Russia and other European countries at the beginning of the 20th century for use as a medicine., Since then, kombucha tea and culture have become available to consumers worldwide. The first commercially available brand in the United States started small in 1995, yet consumer demand continues to drive constant growth in the industry for both mainstream commercial production and home production.

Foodborne Outbreaks

Kombucha has not been attributed to a foodborne outbreak. 


Organic green tea steeping in a mixture of distilled water and sugar. Photo by David Dekevich.
Organic green tea steeping in a mixture of distilled water and sugar. Photo by David Dekevich.

Kombucha is commonly made with black tea but can also be made with green tea or oolong tea, depending on personal preference. Herbal teas or those with added flavorings are not recommended for the health of the SCOBY culture. To make kombucha, tea leaves or tea bags are added to boiled water and allowed to steep for five to ten minutes. Tea leaves or bags are then removed, and sugar is dissolved in the brew while it is still hot., The sweetened tea is cooled to ambient temperature, and the SCOBY plus a small portion of previously fermented kombucha is added., The addition of previously fermented kombucha, or starter liquid, aids in preventing early stage microbial contamination by rapidly reducing the pH of the mixture. A fresh SCOBY and starter liquid can either be purchased online via a starter kit, grown from a commercial bottle of raw unflavored kombucha, or a layer can be peeled off of a “mother SCOBY.”  The SCOBY will steadily grow to cover the surface area of the fermenting kombucha and take the shape of the container that is it brewed in.

Two SCOBYs on a plate ready to for fermentation. Photo by David Dekevich.

The acidified, sweetened tea and SCOBY are placed in a food-safe glass, plastic, or stainless steel brewing vessel and covered with a clean fine-weave porous material (such as a clean coffee filter or towel, but not cheesecloth as the holes are too large to keep out insects and airborne contaminants)) and secured with a large rubber band or bungee cord. Kombucha ferments at room temperature, ideally around 72-84°F (22-29°C), out of direct light, for 7-10 days. It can be tasted and either continue to ferment until desired flavor is reached or decanted for consumption. Once it is ready for consumption, kombucha should be decanted or the SCOBY removed. Kombucha can be consumed unflavored or flavorings, including juice, fruit, herbs, can be added as desired. For safe consumption, the pH must be below 4.2, but not lower than 2.5. During fermentation, the fermenting culture grows in layers on the SCOBY, forming a solid mat on the surface of the liquid. To begin a subsequent kombucha fermentation, the SCOBY and at least 1 cup of the fermented kombucha per every gallon final volume to be prepared, will again be combined with room temperature sweetened brewed tea. This can be done as a “continuous brew,” in which about 80% of the finished kombucha is decanted for consumption, while the SCOBY and liquid remain in the vessel and sweetened tea is added for further fermentation. This minimizes handling and contamination of the SCOBY.


Researchers have identified many acetic and lactic acid bacteria and yeasts in both the SCOBY and kombucha liquid, with variability across culture samples., The ecology consists of, at a minimum, the acetic acid bacteria Komagataeibactor xylinus (reclassified from Gluconacetobacter genus), as well as Lactobacillus spp., and yeasts including Zygosaccharomyces spp. During the fermentation of kombucha, yeasts first metabolize sucrose to glucose and fructose, the glucose is then used to produce ethanol and carbon dioxide. The major acetic acid bacteria genus found in kombucha is Gluconacetobacter and contributes to the decrease in pH during the fermentation process by converting glucose to gluconic acid and ethanol into acetic acid.,,

A layer that has been removed from a mother SCOBY for its own brew.
The “baby” SCOBY forming on the fermenting liquid surface. Photo by David Dekevich.

Komagataeibactor xylinus is responsible for synthesizing glucose into the cellulose that forms the SCOBY, facilitating the environment for  the bacteria and yeast to grow in a symbiotic relationship.  Acetic acid stimulates the yeast to produce ethanol, and ethanol in turn aids acetic acid bacteria to grow and produce acetic acid, in turn decreasing the final alcohol content while increasing the acidity. After this fermentation process, kombucha can be consumed or bottled for distribution.

Production Control Points

Kombucha is categorized as a specialized process in the FDA Food Code, requiring any retail or food service operator planning to sell kombucha to obtain a variance from their regulatory authority and to submit a food safety plan to their regulatory authority as defined in the Food Code section 3-502.11. A Special Report in the Journal of Environmental Health identifies biological and chemical hazards for production analysis and provides guidance to retail manufacturers for a Hazard Analysis and Critical Control Point (HACCP) plan, including the potential for spore-forming bacteria to germinate when tea and sugar are added to boiling water, unwanted pathogen or mold growth, and mycotoxin development, among others. The only significant hazard however is the potential for acid-resistant pathogen growth during fermentation. To prevent this, the pH should be continuously monitored using a digital pH meter and recorded to ensure that the pH adequately reduces from about 5 to 4.2 within seven days. If the pH does not reach 4.2 within seven days after culturing, and then to an end point around 2.5, it is an indication of a contaminated culture or a lower than preferred fermentation temperature.

Large scale kombucha brewing. Source: Shaktea Kombucha
Large scale kombucha brewing. Source: Shaktea Kombucha

Good Manufacturing Practices

The FDA has suggested several good manufacturing practices (GMPs) and standard operating procedures (SOPs) for compliance in safe kombucha production. GMPs include using brewing water over 165°F (74°C), keeping equipment clean and sanitary, using a fresh commercially purchased culture for first brew, not selling kombucha with a pH below 2.5 or higher than 4.2, and to discard kombucha with signs of mold growth. Recommended SOPs include having a precise pH measurement and calibration system as well as properly notifying and instructing employees on the safe production of kombucha according to the FDA guidelines.

Guidance and Regulation

As with many fermented products, a trace amount of alcohol may be present in kombucha. After it is bottled, in the absence of oxygen, the yeast will continue to degrade sucrose to glucose and fructose, and is capable of increasing carbonation and producing alcohol levels greater than 0.5%. Alcohol level must remain below 0.5% alcohol by volume (ABV) during production and after shipment for commercial sale as a non-alcoholic refrigerated beverage. If at any time kombucha contains 0.5% or more alcohol, kombucha must be labeled with the health warning statement required by the Alcoholic Beverage Labeling Act of 1988. Kombucha products with less than 0.5% alcohol can continue to be marketed and sold as non-alcoholic beverages. However, if the product is packaged at an alcohol content less than 0.5% but the content increases to 0.5% or above prior to consumption, it also falls under TTB regulations. Control of factors, including temperature, acidity, glucose availability, and complementary proportion of yeast and bacteria aid in limiting anaerobic alcohol production after packaging. Kombucha could also be pasteurized at 180°F (82°C) for 15 seconds in order to disable the fermentative yeasts and prevent them from producing more alcohol. Preservatives such as potassium sorbate and sodium benzoate can also be used to inhibit further fermentation.

Homemade, bottled kombucha. Source: arealfoodlover.wordpress.com
Homemade, bottled kombucha. Source: arealfoodlover.wordpress.com

Food Safety

Kombucha ingredients and ecological composition vary, therefore individual reactions will differ and adverse health effects may occur. Although rare, there have been reported adverse effects of kombucha consumption that are unsubstantiated or related to poor hygiene or improper technique. The most common reported side effects from drinking kombucha include symptoms of allergic reactions, jaundice, nausea, vomiting and head and neck pain, although these are also likely attributed to misuse of kombucha consumption or other pre-exiting conditions. When kombucha is brewed in a home or in a commercial environment, there is a potential for the SCOBY to become contaminated with harmful organisms, including wild yeasts, bacteria, and Aspergillus, a toxic mold. Even though the pH is kept relatively low, contamination can still occur so consumers must practice good hygiene, including keeping hands and all equipment clean and sanitary, using only food-safe fermentation vessels, and snugly covering the fermentation vessel by a clean fine-weave cloth to minimize air-borne contaminants.

As with trying any new food or beverage, consumers are advised to start with a small amount, and observe one’s own results. New drinkers may experience temporary discomfort due to gut microbiome adjustments, and therefore are recommended to drink no more than four ounces per day, with plenty of water, to minimize negative symptoms. The FDA states kombucha is safe for most individuals to consume up to four ounces per day. Possible health concerns are unknown for individuals with compromised immune function, pregnant or lactating women, young children, or those with preexisting conditions, and therefore consumption is not advised., Isolated cases of gastrointestinal toxicity resolved after discontinuation of kombucha consumption, and daily kombucha consumption over two months was a suspected cause of lactic acidosis among two women in 1995, but a definitive causal link was not determined in any of these reported cases.,

SCOBY with mold growth. The SCOBY and all liquid must be discarded, and the brewing vessel and any equipment in contact must be thoroughly sanitized before continued use. Photo: KombuchaKamp.com

Antimicrobial Properties

Many studies have explored the antimicrobial activity of kombucha. When the final pH is around 2.5, kombucha has antimicrobial activity across a broad spectrum of Gram negative and positive bacteria, and yeasts.,, However, the low pH of kombucha may not be the only reason for the antimicrobial activity; the natural polyphenols of tea, bacteriocins as well as protein structures may also play a role in kombucha’s antimicrobial nature., 


U.S. commercial sales of kombucha started with one company in 1995, and has grown steadily since. Within recent years, the increased interest and public recognition of probiotics, or live microorganisms that confer an investigated health benefit on the host, has driven growth in kombucha consumption. According to the SPINS Market Research Group, kombucha consumption experienced a 29% growth from February 2013- February 2014, with yearly sales at $122.7 million. Kombucha sales reached an all-time high from 2011-2012 with a nearly 40% growth in sales. While kombucha originally began as a product mostly sold in health food stores, kombucha’s popularity has made its way onto large chain store shelves. Kombucha is the fastest-growing product in the functional beverage market and expected to grow from a half-billion dollar industry to a 1.8 billion dollar industry by 2020. Kombucha Brewers International, the non-profit organization representing commercial kombucha brewers, strives for producers to work collaboratively, not just competitively. As an industry, their hope is to work together to maintain innovation, growth, and high product standards while advancing education and research.  


G.T.'s Kombucha - Black Chia label from bottle. Photo by: David Dekevich
G.T.’s Kombucha – Black Chia label from bottle. Photo by: David Dekevich

Kombucha contains live beneficial bacteria and yeasts, organic acids, B vitamins, antioxidants, and trace minerals. Unflavored kombucha contains generally about 30 calories, 2-3 grams of sugar, and small amounts of caffeine per eight ounces. Unflavored kombucha does not contain fat or cholesterol, and is very low in protein and sodium. Added juice or flavoring ingredients may contribute additional micronutrients and will cause variation in caloric and macronutrient content as well.

Kombucha has traditionally been consumed for its supposed health benefits, although many of the claimed health benefits from kombucha have not been adequately researched. Initially it was believed to be a detoxifying agent, aid in gastrointestinal health and to have energizing properties. Consumers still consume the beverage for these perceived benefits, as well as many others including its supposed influence on immunity, obesity, cardiovascular disease, atherosclerosis, hypertension, anemia, pulmonary disease, antioxidant capabilities and cancer prevention. These claimed benefits, as well as many others, are being evaluated to determine if there is a relationship between consumption of kombucha and improved health and what the responsible mechanism may be. Results from animal studies link the majority of kombucha’s alleged health benefits to kombucha’s antioxidant properties and free radical scavenging ability.,,,




Kristina Underthun, MS

University of Florida


David Dekevich, MPH

Liaison, Florida Integrated Food Safety Center of Excellence Florida Department of Health


David Dekevich

David Dekevich

Florida Integrated Food Safety Center of Excellence Liaison at the Florida Department of Health

Laura Bauer

Laura Bauer

Leave a Reply

You must be logged in to post a comment.